

Biocontrol of fungal plant pathogens in cannabis using Bacillus amyloliquefaciens I113

H. Hornick-Martyk^{1,2}, A. Hawkins^{2,3}, R. Joyce^{2,4,5}, Y. Kroner², S. Saldias², S. Kandasamy²

¹Department of Earth Science, University of Western Ontario, London, ON; ²A&L Biologicals, Agroecological Research Centre, London, ON;

³Department of Basic Medical Science, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology and Immunology, University of Western Ontario, London, ON; ⁴Department of Microbiology, University, ⁴Department of Microbiology, University, ⁴Department, ⁴De

⁵Department of Pathology, University of Western Ontario, London, ON

Field Trial Introduction 40% of fungal isolates from this crop of cannabis were *Fusarium*, the next most abundant • Since the legalization of cannabis in 2018 fungal pathogens have been significantly fungal pathogen only comprised 10% of the isolates undermining cannabis yield, with losses as high as 30%¹ I113 reduced disease by an average of 38% during the cannabis vegetative stage with 49% • Furthermore, fungal pathogens in cannabis can infect humans if not managed correctly by of treated plants having a healthy disease score (Figure 2&3) producing mycotoxins which can result in fever, pneumonia, and neutropenia^{2, 3} Through the vegetative stage to the end of the pre-flowering stage, I113 reduced disease by • Fungal pathogens are often very difficult for growers to manage due to the lack of an average of 28% with 37% of treated plants having a healthy disease score (Figure 2) registered fungicides available for use on cannabis¹ Over the whole growing season I113 reduced disease by an average of 20% (Figure 2&3)

• Additionally, fungicide residue on cannabis can be detrimental to human health as it has

been shown to contain endocrine disruptors and hepatoxic compounds³

- Bacillus amyloliquefaciens (I113), a biocontrol agent, offers a promising solution to reduce fungal infections in cannabis due to its strong antifungal metabolite production
- From previous trials I113 is known to inhibit *Fusarium*, *Alternaria*, *Colletotrichum*, Septoria and Botrytis fungal species, all of which are common fungal pathogens in cannabis
- I113 has also shown to be an effective bio-stimulant in other field trials with crops such as squash, pumpkins, and tomatoes

Objectives

- To identify the most common fungal pathogens affecting outdoor cannabis production where the trial was conducted
- To determine the *in vitro* anti-fungal activity of I113 against common fungal isolates found in cannabis
- To determine the biocontrol capabilities of I113 on fungal pathogens in cannabis grown outdoors

Methods

Inhibition Assays

- A colonization assay was performed to determine the fungal pathogens that had infected this crop of cannabis
- Fungi were isolated and identified by sequencing
- Fungal isolates were plated on 1:1 PDA-NA and grew until they reached a diameter of ~3cm 10µL of I113 along with an NB control were plated on opposite sides of the fungal isolates

replicates

The disease characteristics did not vary significantly between the control and treated

Figure 2. Comparison of disease in control and treated cannabis plants. (Top) 6 weeks after treatment began (Bottom) 2 Weeks after budding started.

Metabolite Screening

- Metabolites were harvested from I113
- High Performance Liquid Chromatography (HPLC) was used to identify metabolites

Field Trail

- I113 was inoculated in nutrient broth and grown for 48 hours on a shaker at 150 rpm and 30°C
- Culture was diluted to 3% and sprayed weekly from June 20th, 2023, to August 18th, 2023
- Disease scores were recorded weekly from August 1st, 2023, to September 9th, 2023, using a scale of 1-4

	Results						
	Inhibition Assays						
•	Fusarium, Phoma, Sarocladium, and Trametes fungal species were found to be the main						
fungal pathogens infecting this crop of cannabis							
•	I113 is a good biocontrol agent (Table 1) as it shows strong inhibition towards Fusarium,						
	and madamata inhibition towards Dhamer and Turner at a (Figure 1)						

- and moderate inhibition towards *Phoma* and *Trametes* (Figure 1)
- I113 produces antifungal metabolites to inhibit the growth of fungal pathogens (**Table 2**)

Functional Traits	I113		Metabolite	Mode(s) of Action
Fusarium Inhibition	++++	Fengycin	Fengycins	Induced systematic resistance
Phoma sp.	+			Membrane pore formation
Sarocladium strictum	Unknown		Surfactins	Induced systematic resistance Membrane pore formation
Trametes versicolor	++		Iturins	Membrane Pore Formation

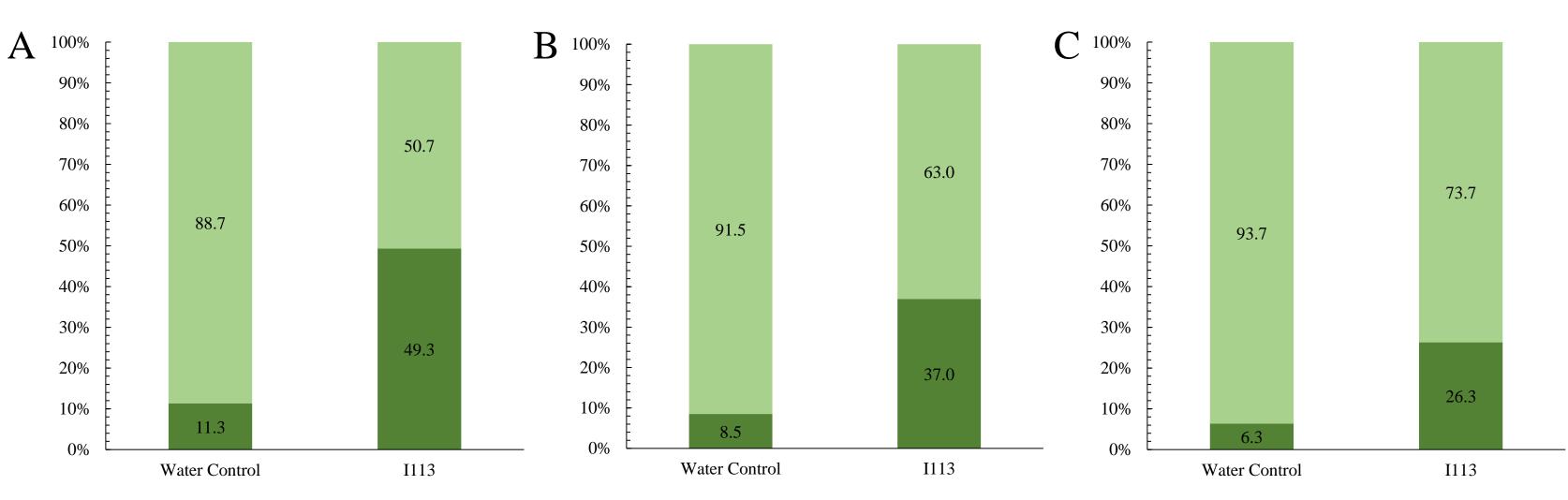
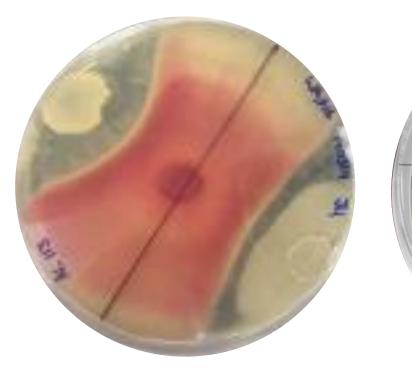



Figure 3. Ratio of healthy (2 or under, dark green)) to unhealthy (3 or over, light green) disease scores. (A) Vegetative stage (B) Vegetative and pre-flowering stage (C) Entire growing season.

Conclusions

- The most common fungal pathogen in this crop of cannabis is *Fusarium* with the most common species being Fusarium equiseti
- In vitro I113 is effective at inhibiting common fungal pathogens such as *Fusariam*, while still moderately inhibiting less common pathogens such as *Phoma* and *Trametes*
- I113 was effective at reducing disease incidence and severity in cannabis plants
- As the growing season progressed treated plants became increasingly more diseased

 Table 1. Functional; traits of I113.
 Scoring scale:
(-) negative, (+) weak positive, (++) positive, (+++) high positive, (++++) strong positive.

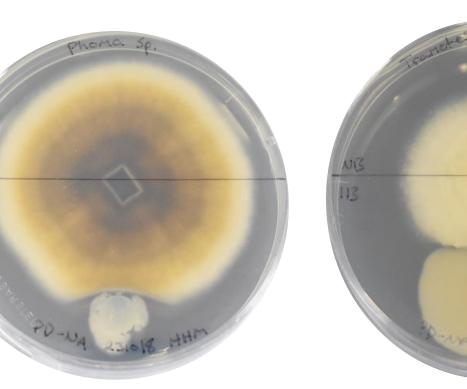


 Table 2. Mode of action of 3 cyclic lipopeptides
produced by I113⁴. Responsible for the antifungal properties of I113.

Figure 1. Inhibition assays plates with

cannabis isolates and **I113.** Qualitative analysis of assays determined I113 functional traits.

Future Directions

- Confirm the effectiveness of I113 at supressing fungal pathogens in cannabis, specifically how to reduce pathogens near the end of the growing season
- Continue to build a database of common fungal pathogens in cannabis to ensure the application of biocontrol treatments targets the most plentiful and harmful pathogens
- Explore the possibility of I113 working as a bio-stimulant in cannabis
- Run trials to determine if I113 could act as either a biocontrol agent or bio-stimulant in closely related crops such as hemp or hops

References

- Punja, Z.K. (2021). Emerging diseases of Cannabis sativa and sustainable management. Pest Management Science, 77(9), 3857-3870. https://doi.org/10.1002/ps.6307
- Gwinn, K.D., Hansen, Z., Kelly, H., & Ownley, B.H. (2022). Diseases of Cannabis sativa Caused by Diverse Fusarium Species. Frontiers in Agronomy, 3(796062). https://doi.org/10.3389/fagro.2021.796062
- Montoya, Z., Conroy, M., Vandan Heuvel, B.D., Pauli, C.S., & Park, S. (2020). Cannabis contaminants Limit Pharmacological Use of Cannabidol. Frontiers in Pharmacology, 11(571832). https://doi.org/10.3389/fphar.2020.571832
- Falardeau, J., Wise, C., Novitsky, L., & Avis, T.J. (2013). Ecological and Mechanistic Insights Into the Direct and Indirect Antimicrobial Properties of Bacillus subtilis Lipopeptides on Plant Pathogens. Journal of Chemical Ecology, 39, 869-878. https://doi.org/10.1007/s10886-013-0319-7

F. graminearum

Phoma sp.

T. versicolor