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Background

e Canola (Brassica napus) is one of the most commercially important
oilseed crops in the world.

* Canada accounts for the world’s largest canola production.
* The total economic impact of the Canadian canola sector for the

average of the three years, 2020/21-2022/23 averaged CS 43.7 billion
per year (GlobalData, 2024).

* Increasing stresses from fungal diseases are threatening the canola
vield and quality.




Blackleg disease

Causal agent: Primarily by Leptosphaeria maculans
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Yield losses: 30-50% due to severe epidemics
(Wang et al., Plants, 2023)

Disease management: Deployment of blackleg-
resistant canola cultivars, diversified cropping
systems, fungicidal treatment, and monitoring the
race dynamics of L. maculans

Verticillium stripe disease

Causal agent: Verticillium longisporum
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Yield losses: between 10-50%

(Rimmer et al., Compendium of Brassica Diseases, 2007)

Disease management: Incorporation of biosecurity
measures and diversified cropping systems

No commercial canola varieties in Canada have been
registered as resistant to Verticillium stripe!




Resistance (R) genes in B.
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* Qualitative resistance is
controlled by single dominant
R genes in B. napus.

* Involves a gene-for-gene
Interaction.



Research questions

* Verticillium stripe can co-exist with blackleg.
* Co-inoculation of V. longisporum and L. maculans increased blackleg severity and yield losses in

canola under both field and greenhouse conditions (Wang et al., Plants, 2023).

1.Does the presence of Verticillium stripe in canola break down the blackleg disease resistance
determined by major R genes?

2.Are there any key genes in B. napus that are involved in the response to both fungal diseases
and their interactions?



Objectives

1. Investigate how R genes in canola and Avr genes in L. maculans interact with V. longisporum

2. Understand the transcriptome changes in B. napus due to the interaction of R and Avr genes
with the V. longisporum pathogen.



Materials and Methods

Table 1: Brassica napus genotypes used in the study

Canola variety

Resistance genotype

Reference

Westar No R gene Balesdent et al., 2002
Quinta RIm1, RIm3 Kutcher et al., 2010
Jet Neuf RIm4 Gout et al., 2006
Surpass 400 RIm1, RImS Van de Wouw et al., 2009
01-23-2-1 RIm7 Dilmaghani et al., 2009
Goéland RIm9 Balesdent et al., 2006
Glacier RIm2, RIm3 Balesdent et al., 2001
02-22-2-1 RIm3 Gout et al., 2006
MT29 RIm1, RIm9 Delourme et al., 2008
1065 LepR1 Kutcher et al., unpublished
1135 LepR2 Kutcher et al., unpublished




Inoculation of plant material

Root dip inoculation — V. longisporum (V143)

Two-week-old
canola seedlings

Roots dipped in VI43 spore

suspension for 40 min

Petiole inoculation — L. maculans

Four-leaf stage

A 10 ulL droplet of
L. maculans spore
suspension



Objective 1:

Assessing the disease severity (DS) of infected canola plants
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1. Assessment of Verticillium stripe severity

At the young stage — at 7,14,21, and 28 days post inoculation (dpi)

(Eynck et al., Journal of Plant Diseases and Protection,2009)

At the adult stage — at 105 dpi
(Cui et al., Canadian Journal of Plant Pathology, 2023)

2. Assessment of blackleg severity

At the adult stage — at 105 dpi

(Guo and Fernando, Plant Disease,2005)

Figure 1: Disease rating scale for adult plants
infected by Verticillium longisporum



Results

Assessment of DS of Verticillium stripe at the young stage

Disease severity index
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Disease severity index (DSI) =

N, = number of plants in the respective class

(Eynck et al., 2009)
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Water control Inoculated Water control Inoculated Water control
01-23-2-1 Westar 01-23-2-1

Inoculated Water control Inoculated Water control Inoculated Water control Inoculated Water control
Jet Neuf Quinta Jet Neuf 11




Objective 2:

Understanding the transcriptome changes in B. napus

RNA extraction and RNA sequencing of samples from 01-23-2-1 (RIm 7) with different disease treatments were
carried out.
Why 01-23-2-1 canola genotype?
1. The resistance in 01-23-2-1 to the avirulent isolate (UMAvr7) was broken down, possibly due to the presence of
V. longisporum.

2. Shows better resistance to Verticillium stripe at the young stage compared to the susceptible genotype Westar.

DSI for Verticillium stripe at the young stage 21 dpi
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3. The L. maculans strains used to inoculate 01-23-2-1 (RIm 7) have the same genetic background except
the avirulence gene AvrLm7, which was knocked out (zou et al., Frontiers in Microbiology, 2020).

UMAvr7 umavr?/
(with AvrLm?7) (without AvrLm?7)

} |

Incompatible interaction Compatible interaction
01-23-2-1 (with Rim 7)
14 dpi
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Leaf and root samples were collected from 01-23-2-1 (RIm 7) canola genotype at 14 dpi with

blackleg.

Table 2: Number of tissue samples collected from each treatment

Treatment

Number of root samples
collected (per replicate)

Number of leaf samples
collected (per replicate)

Plants inoculated with VI43

Plants inoculated with umavr?7

Plants inoculated with UMavr7

Plants inoculated with VI43 and umavr7

Plants inoculated with VI43 and UMavr7

Non-inoculated water controls

W w i w | w | w

w |l w i w | w | w
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Results

Number of differentially expressed genes in each treatment
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Unique and shared DEGs of 01-23-2-1 canola genotype inoculated with Verticillium (VI43) and
blackleg virulent strain (umavr7) vs VI43 and blackleg avirulent strain (UMAvr7)
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DEGs of leaves inoculated with VI43 and UMAvr7 vs water control
DEGs of roots inoculated with VI43 and UMAvr7 vs water control
DEGs of roots inoculated with VI43 and umavr?7 vs water control

DEGs of leaves inoculated with VI43 and umavr?7 vs water control
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Differential expression of defence related genes in leaves

Vacuolar-sorting receptor 7 (VSR7)
Metacaspase-2 (AMC2)

Aquaporin PIP2-2

Ent-copalyl diphosphate synthase (GA1)
Gibberellin 2-beta-dioxygenase 8 (GA20X8)
WAT1-related protein At4g15540
Protein SRG1

BON1-associated protein 2 (BAP2)
Jacalin-related lectin 35 (JAL35)
Cytosolic sulfotransferase 16 (SOT16)
Cytochrome P450 81F1 (CYP81F1)
WRKY transcription factor 51 (WRKY51)
Transcription factor MYB21

IAA-amino acid hydrolase ILR1-like 6 (ILL6)

Lipoxygenase 2 (LOX2)

Expansin-Al (EXPA1)

Beta-D-glucopyranosyl abscisic beta-glucosidase (BGLU18)

MATE efflux family protein 5 (DTXL1) --

Pathogenesis-related protein 1 (PR1) -

2-oxoglutarate/Fe(ll)-dependent dioxygenase (DIOX2)
Beta carbonic anhydrase 3 (BCA3)

Allene oxide cyclase 2 (AOC2)

Cytochrome P450 79B1 (CYP79B1)
Ethylene-responsive transcription factor 1A (ERF1A)
Transcription factor MYB29

18.5

Calcium ion binding

-- Proteolysis

Transmembrane transport

-- Gibberellin biosynthetic process

Regulation of hormone levels
Auxin-activated signaling pathway
Cellular response to endogenous stimulus
Defense response

Carbohydrate binding

Glucosinolate biosynthetic process

Indole-containing compound metabolic process

--- Response to external biotic stimulus

Jasmonic acid mediated signalling pathway

- Xenobiotic transmembrane transport

Systemic acquired resistance

Jasmonic acid biosynthetic process

Regulation of abscisic acid-activated signalling pathway

-- Extracellular region

Regulation of jasmonic acid mediated signalling pathway

Carbonate dehydratase activity
Jasmonic acid biosynthetic process
Camalexin biosynthetic process
Response to chitin

Response to salicylic acid
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Differential expression of defence related genes in roots

Vacuolar-processing enzyme delta-isozyme (dVPE) -- Extracellular region

Zinc-finger homeodomain protein 11 (ZHD11) DNA binding
Probable cysteine proteinase At4g11320 Proteolysis involved in protein catabolic process
17.6 kDa class Il heat shock protein (HSP17) - Response to oxidative stress
Two-component response regulator ARR5S Hormone-mediated signaling pathway
Flavonol synthase 3 (FLS3) Flavonol synthase activity
Lysine histidine transporter 1 (LHT1) - Transmembrane transporter activity
Multiprotein-bridging factor 1c (MBF1C) Cellular response to endogenous stimulus
Callose synthase 12 (CALS12) - - Defense response by callose deposition in cell wall
Peroxidase (HRPN) Hydrogen peroxide catabolic process

-- Oxidoreductase activity

Response to salicylic acid

- Response to oxidative stress

Protein IDA Response to ethylene

Respiratory burst oxidase homolog protein B (RHOHB) -- Oxidoreductase activity
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Cytochrome P450 78A7 (CYP78A7)

Transcription factor MYB29

17.4 kDa class lll heat shock protein (17.4B)




Conclusions

* The canola genotype 01-23-2-1 shows more resistant to Verticillium stripe at the
young stage.

e Jet Neuf and Quinta are more susceptible to Verticillium stripe at the young stage.

* The number of DEGs of leaves were higher than that of roots in all the treatments
except for plants inoculated only with VI43.
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Way Forward..

Assessing the adult stage DS of canola genotypes inoculated with both
V. longisporum and L. maculans.

Validating the functions of candidate DEGs involved in key resistance

pathways, such as plant hormone signal transduction pathways and
production of antioxidant enzymes.

@ ldentifying potential DEGs that can be utilized in breeding to
improve resistance to both pathogens in canola.
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