STRAWBERRY GROWING CONDITIONS AND BENEFICIAL INSECTS:

THE IMPACT OF LOW NIGHTTIME TEMPERATURES AND LED LIGHTING ON APHID PREDATORS

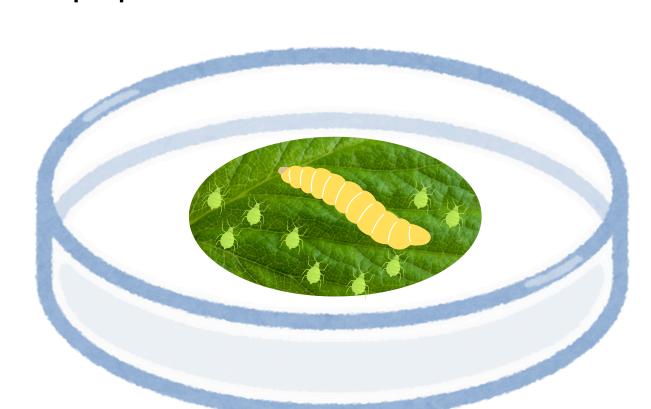
Karli Barton¹ ², Dr. Rebecca Hallett¹, Dr. Roselyne Labbe¹ ²

(2)

Agriculture and Agri-Food Canada

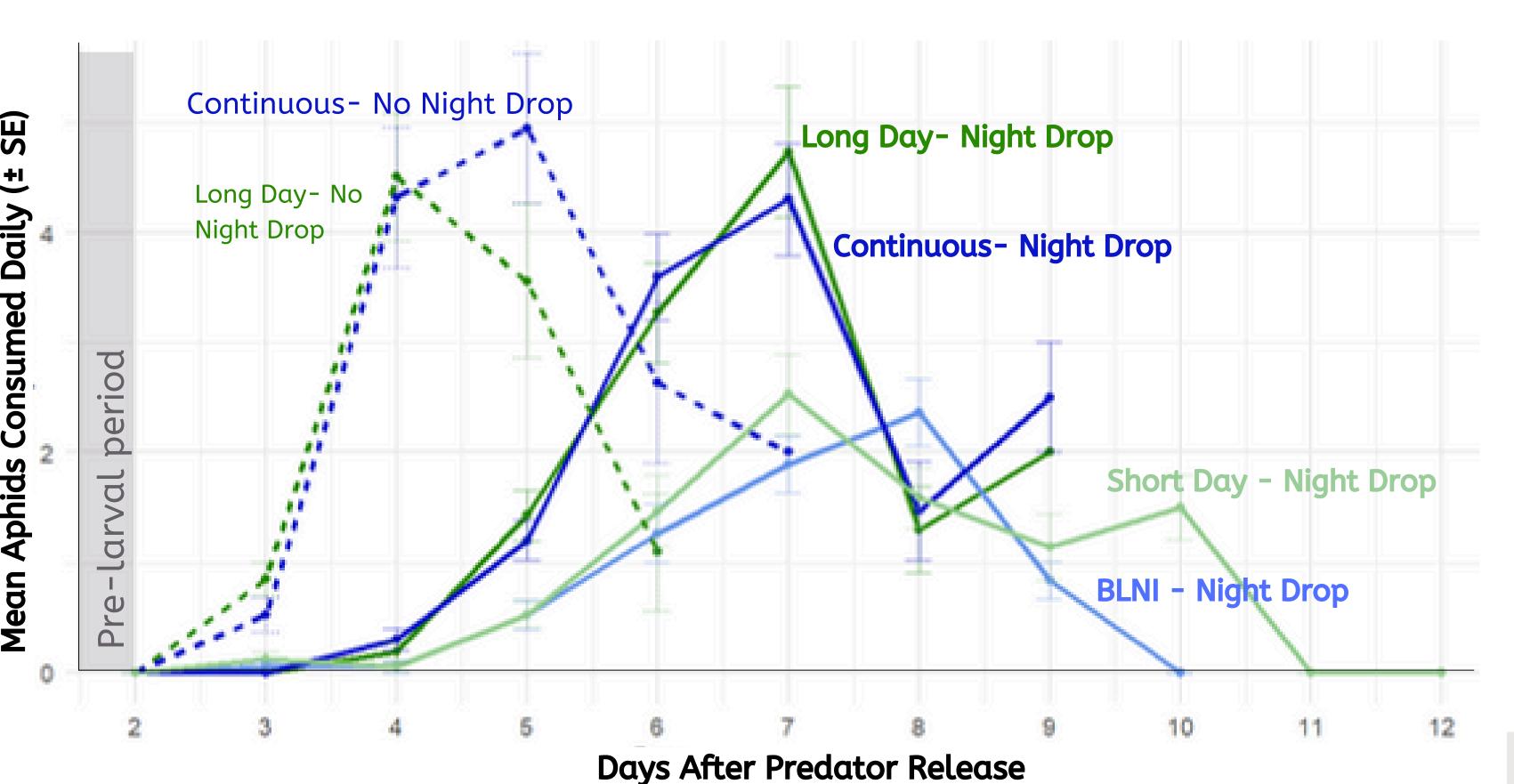
Introduction

Controlled-environment strawberry production in Canada has increased fivefold since 2020³, driving rapid research and innovation in this emerging field. Aphids remain a major challenge, reducing yields through direct feeding damage and by transmitting plant diseases². Advances such as novel LED lighting regimes have been shown to enhance yield⁵ and reduce energy costs¹, while cooler nighttime temperatures can improve fruit quality⁴. Despite these benefits for plant growth, little is known about how these environmental conditions affect biological control agents, such as *Aphidoletes aphidimyza*.


Figure 1. Key biological control agents and target pests in strawberry crops: (a) *Aphidoletes aphidimyza* larva, (b) *Myzus persicae* (green peach aphid).

Objective

Evaluate how controlled-environment strawberry growing conditions affect the development and predation rates of key aphid predators.


Methodology

- Trials were conducted in programmable Conviron PGR-15 growth cabinets with dynamic LED lighting (Sollum SF05B)
- Predators were placed in Petri dishes on strawberry leaf discs with 10 aphids, which were replaced daily. Each treatment received 20 replications.
- Data Collection:
 - Daily counts of live and dead aphids (predation)
 - Recorded predator survival and larval development time
 - Observations continued until predator pupation

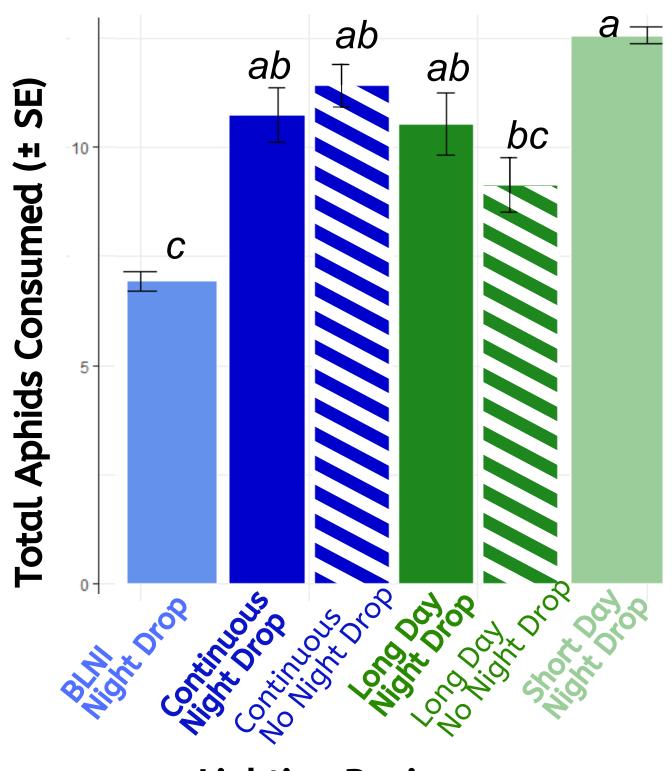


Figure 1. Experimental setup showing Aphidoletes aphidimyza larva on a strawberry leaf disc within a Petri dish. Each dish contained 10 aphids as prey, replaced daily.

Results

Figure 2. Daily predation by *A. aphidimyz*a (mean ± SE). No night drop led to earlier peaks in daily predation and a shorter feeding period. Long Day and Continuous had later, extended peaks, while Short Day and BLNI showed flatter peaks and the longest feeding periods. Results are based on a generalized linear mixed-effects model with lighting, and temperature as fixed effects and day as a random effect.

Lighting Regime

Figure 3. Total predation by Aphidoletes aphidimyza (mean ± SE) under different lighting and temperature regimes. Estimated marginal means were obtained from a generalized linear mixed model (GLMM) using the emmeans package in R. Different letters indicate significant pairwise differences among treatments (Tukey-adjusted, p < 0.05).

Table 2. Impact of different light and temperature strategies on *Aphidoletes aphidimyza* performance. Treatments affected predator development, daily and total aphid consumption, and overall suitability for both strawberries and predators. Green = better performance; red = poorer performance. Check marks indicate a balance between suitability for crop and predator performance. Values are means ± SE. Different letters within a column indicate significant differences among treatments (p < 0.05).

Liabtina	Tomporoturo	Larval Develop	. Predation/Day	Total Predation	Suitability	Suitability for
Lighting	Temperature	(days)	(#aphids)	rotat Predation	for Crop	Predator
BLNI	Night Drop	[5] 6.1 (±0.2)	[6] 0.8 (±0.1) ^c	[6] 6.9 (±0.2) ^c	Suitable	Unsuitable
Short Day	Night Drop	[6] 6.7 (±0.3)	[5] 0.9 (±0.1) ^c	[1] 12.6 (±0.2) ^a	Unsuitable	Acceptable
Continuous	No Drop	[1] 3.6 (±0.1)	[1] 2.5 (±0.3) ^a	[2] 11.4 (±0.5) ^{ab}	Unsuitable	Best
Continuous	Night Drop	[4] 5.8 (±0.1)	[3] 1.6 (±0.2) ^b	[3] 10.8 (±0.6) ^{ab}	Suitable	Acceptable 🗸
Long Day	No Drop	[2] 3.7 (±0.2)	[2] 2.1 (±0.2) ^a	[5] 9.2 (±0.6)bc	Unsuitable	Best
	Night Drop	[3] 5.4 (±0.2)	[3] 1.6 (±0.2) ^b	[4] 10.5 (±0.7) ^{ab}	Suitable	Acceptable 🗸

Table 1. Lighting strategies (BLNI, Continuous, Long Day, and Short Day) were tested under two temperature regimes: either a nighttime drop (22°C during the day / 14°C at night) or no drop (continuous 22°C). Treatments mimic seasonal conditions or provide benefits such as higher yield, sweetness, or energy savings.

Treatment	Benefit	Description
Blue Light Night Interruption (BLNI)	Increases strawberry yields ⁵	10 hrs white, 2 hrs blue night interruption
Continuous Lighting	Energy savings ¹	8 hrs blue, 16 hrs white low intensity
Long Day	Simulates summer conditions	16 hrs white, 8 hrs dark
Short Day	Simulates fall conditions	10 hrs white, 14 hrs dark
Night time temperature drop	Increases berry sweetness ⁴	22°C during day 14°C at night
No temperature drop	Control	Continuous 22°C

Disucssion

Our results indicate a trade-off between crop performance and predator success in CEA strawberry production. While low nighttime temperatures and some LED regimes improve yield and fruit quality, they can reduce predator activity and/or slow development. Continuous and Long-day lighting offered the best balance, supporting strong predator development and predation while maintaining acceptable crop outcomes. In contrast, Blue-light night interruption and Short-day conditions improved crop traits but risked biocontrol failure. Adopting continuous or long-day regimes, especially with a nighttime temperature drop, offers growers a practical path to combine yield, energy efficiency, and reliable pest control.

Next Steps

- Compare predator species (in progress with Chrysoperla carnea)
- Compare with different aphid species (Chaetosiphon fragaefolii)
- Scale up to greenhouse trials for validation in production conditions

Acknowledgements

This project is funded by **SCAP-ASP-085 Berry Growers ON** Activity #2: Managing Pests on
Greenhouse and Vertically Farmed Strawberries

References

Hao, X., Guo, X., Lanoue, J., Zhang, Y., Cao, R., Zheng, J., ... & Yelton, M. (2017, August). A review on smart application of supplemental lighting in greenhouse fruiting vegetable production. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227 (pp. 499-506).
 Lahiri, S., Smith, H. A., Gireesh, M., Kaur, G., & Montemayor, J. D. (2022). Arthropod pest management in strawberry. Insects, 13(5).
 Statistics Canada. (2024) Table 32-10-0456-01 Production and value of greenhouse fruits and vegetables.

4. Wang, S. Y., & Camp, M. J. (2000). Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae, 85(3), 183-199.

5. Yang, J., Song, J., & Jeong, B. R. (2024). Flowering and runnering of seasonal strawberry under different photoperiods are affected by intensity of supplemental or night-interrupting blue light. *Plants, 13*(3), 375.