Characterizing beta-tubulin dsRNA for RNAi control of an aggressive Neopestalotiopsis species

Sarah Koeppe ${ }^{1}$, Melanie Kalischuk ${ }^{1}$

${ }^{1}$ Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada N1G 2W1

INTRODUCTION

Neopestalotiopsis sp. is a newly emerging aggressive fungal pathogen of strawberry (Fragaria x ananassa (Duch.)) that has been detected in Ontario since 2020 (1). Currently, there are no resistant strawberry cultivars or control methods for the pathogen (1).
RNA interference (RNAi) is a cross-kingdom conserved eukaryotic mechanism triggered by double-stranded RNA (dsRNA) that is currently being explored as a crop protection strategy (2).

FIGURE 1. Pictured above is a diagram of the RNAi pathway.
Beta-tubulin is an excellent candidate for RNAi as it is a housekeeping gene responsible for producing beta-tubulins, which combine with other tubulins to form tubulin fibres that separate chromosomes during cellsplitting and support cellular structure (3). Beta-tubulin proves to be a good target for fungi specifically as it is the target of site-specific fungicides like benzimidazoles (3). Characterization of this gene is important to designing dsRNA constructs. General rules for designing dsRNA constructs:
1.Avoid regions close to the initiation codon ($75-100$ bases)
2.Avoid sites that result in multiple secondary structures
3.Avoid introns and 5^{\prime} UTR or 3^{\prime} UTR
4. GC content within 30-50\%
5.Avoid repeat sections of A's or T's
6. Potentially avoid GGGG or CCCC

MATERIALS AND METHODS

Sequence Sources

Entry PFICI_14162 (Pestalotiopsis fici, tubulin beta chain, a genomic sequence) was utilized as a comparison model as it is wellcharacterized and highly related to the genus Neopestalotiopsis N. rosae is most closely related to the novel aggressive strain, and therefore GenBank entry JALGAS010000006.1 (contig 6 of a wholegenome shotgun sequencing project, an mRNA sequence) was used as a representative of that strain to characterize the gene

Finding Introns, Exons, and Splicing Sites

PFICI_14162 was compared to JALGAS010000006.1 to pull betatubulin from the contig (Nrosae_Btub)
The browser EnsemblFungi was utilized as it presents the characterization of genes from databases like NCBI GenBank Characterization of entry PFICI_14162 was aligned with Nrosae_Btub

Motif Search

PFICI_14162 and Nrosae_Btub were translated using https://web.expasy.org/translate/ and run through the program https://prosite.expasy.org/scanprosite/ to identify motifs

RESULTS

ATGCGTGAGATTGTGAGTCCATGACTACCCCCGACCTTCCCCTCTATTTACTATACCAACCGACCTACCCTGGACGCGTC CGACAACAGATTCATCCGAAGTCGTCGCTTCATCGTCATGACTGCCGTCGTAATTCAAGTAAATCAAGGTTCTCTAGCTA ACGGGTCTTTTTTTCTCTGCGAATAGGTTCACCCTTCAGACCGGTCAGTGCGTAAGTAACATGCCAAATCCCGCGATATAG CGCGTTCGAAACACCAAAGCTCACAATCATGAACAGGGTAACCAAATTGGTGCTGCCTTCTGGTATGTAACCTGTCTGT CTCGACACGGCCTCAATACGACGTTTTTCGTGCCTGCACGACGGCCCCGAACAGTGAATTAGGTCAAGATAGAGGGAA
CATGATGCTAATAGGTCATTGATAGGCAAACCATCTCTGGCGAGCACGGTCTCGACAGCAATGGAGTGTATGTACTATTT CATGATGCTAATAGGTCATTGATAGGCAAACCATCTCTGGCGAGCACGGTCTCGACAGCAATGGAGTGTATGTACTATTT
TTAATTCTCCTGCTCCTGTAAGCTGTAGGCTGACTCGATGGCCATTTAGCTACAACGGTACCTCCGAGCTCCAGCT TTAATTCCTCCTGCTTCCTGTTAAGCTTGTAGGCTGACTCGATGGCCATTTAGCTACAACGGTACCTCCGAGCTCCAGCT CGAGCGTATGAGCGTCTACTCGAACGAGGCTTCCGGCAACAAGTACGTTCCTCGTGCCGTCCTCGTCGATCTCGAGCC CGGTACCATGGATGCCGTCCGCGCCGGTCCCTTCGGCCAGCTCTTCCGCCCTGACAACTTCGTCTTCGGTCAGTCCG GTGCTGGCAACAACTGGGCCAAGGGTCACTACACTGAGGGTGCTGAGCTCGTCGAC CGCGAGGCCGAGGCTTGCGACTGCCTCCAGGGTTTCCAGATCACCCACTCCCTGGGTGGTGGTACCGGTGCCGGTAT GGGTACTCTGTTGATCTCCAAGATCCGCGAGGAGTTCCCCGACCGCATGATGGCTACCTTCTCGGTCGTGCCCTCCCC CAAGGTCTCTGACACCGTCGTCGAGCCCTACAACGCCACCCTCTCGTCCACCAGCTGGTCGAGAACTCCGACGAGA
CCTACTGCATTGACAAGGAGGCTCTCTACGACATCTGCATGCGTACCCTGAAGCTGTCCAACCCCTCTTACGGTGACCT GAACCACCTGGTCTCCGCCGTCATGTCTGGCGTCACCACTTGCTTGCGTTTCCCTGGTCAGCTCAACTCTGACCTGCG CAAGTTGGCTGTCAACATGGTGCCCTTCCCCCGTCTGCACTTCTTCATGGTCGGCTTTGCTCCGCTGACCAGCCGTGG
 CGTTCTTGAGCTAACGGGTTTTCTCTAGCCGTGGTAAGGTCTCCATGAAGGAGGTCGAGGACCAGATGCGCAACGTCCA AAACAAGAACTCCTCCTACTTTGTTGAGTGGATCCCCAACAACGTGCAGACCGCTCTCTGCTCCATTCCTCCCCGCGG CCTTAAGATGTCGTCTACCTTCGTCGGAAACTCGACCGCTATCCAGGAGCTGTTCAAGCGTATCGGCGAGCAGTTCACT GCCATGTTCCGTCGCAAGGCTTTCTTGCATTGGTACACTGGTGAGGGTATGGACGAGATGGAGTTCACTGAGGCTGAG TCCAATATGAACGACTTGGTCAGCGAATACCAGCAGTACCAGGATGCCGGTGTCGATGAGGAGGAGGAGGAGTACGAG GAGGAGCCTCTGCCCGAGGACGAGTAA

FIGURE 3. Pictured above is a diagram containing the Nrosae_Btub sequence characterized. Red lettering is the start and stop codons, green lettering is the Tubulin_Autoreg motif, yellow lettering the tubulin motif, yellow highlight is splicing sites, grey highlight is introns, and green highlight is exons.
200 bp construct
CAACTTCGTCTTCGGTCAGTCCGGTGCTGGCAACAACTGGGCCAAGGGTCACTACACTGAGGGTGCTGAGCTCGTCGA CCAGGTCCTCGACGTTGTCCGTCGCGAGGCCGAGGCTTGCGACTGCCTCCAGGGTTTCCAGATCACCCACTCCCTGG ATGGGTACTCTGTTGATCTCCAAGA
400 bp construct
CCCGGTACCATGGATGCCGTCCGCGCCGGTCCCTTCGGCCAGCTCTTCCGCCCTGACAACTTCGTCTTCGGTCAGTCC GGTGCTGGCAACAACTGGGCCAAGGGTCACTACACTGAGGGTGCTGAGCTCGTCGACCAGGTCCTCGACGTTGTCCG TCGCGAGGCCGAGGCTTGCGACTGCCTCCAGGGTTTCCAGATCACCCACTCCCTG
TGGGTACTCTGTTGATCTCCAAGATCCGCGAGGAGTTCCCCGACCGCATGATGGCTACCTTCTCCGTCGTGCCCTCCCC CAAGGTCTCTGACACCGTCGTCGAGCCCTACAACGCCACCCTCTCCGTCCACCAGCTGGTCGAGAACTCCGACGAGAC CTACTGCATTG
600 bp construct
CCCGGTACCATGGATGCCGTCCGCGCCGGTCCCTTCGGCCAGCTCTTCCGCCCTGACAACTTCGTCTTCGGTCAGTCC GGTGCTGGCAACAACTGGGCCAAGGGTCACTACACTGAGGGTGCTGAGCTCGTCGACCAGGTCCTCGACGTTGTCCG TCGCGAGGCCGAGGCTTGCGACTGCCTCCAGGGTTTCCAGATCACCCACTCCCTG
TGGGTACTCTGTTGATCTCCAAGATCCGCGAGGAGTTCCCCGACCGCATGATGGCTACCTTCTCCGTCGTGCCCTCCCC CAAGGTCTCTGACACCGTCGTCGAGCCCTACAACGCCACCCTCTCCGTCCACCAGCTGGTCGAGAACTCCGACGAGAC CTACTGCATTGACAACGAGGCTCTCTACGACATCTGCATGCGTACCCTGAAGCTGTCCAACCCCTCTTACGGTGACCTG AACCACCTGGTCTCCGCCGTCATGTCTGGCGTCACCACTTGCTTGCGTTTCCCTGGTCAGCTCAACTCTGACCTGCGC AAGTTGGCTGTCAACATGGTGCCCTTCCCCCGTCTGCACTTCTTCATGGTCGGC
800 bp construct
GGGTTTCCAGATCACCCACTCCCTGGGTGGTGGTACCGGTGCCGGTATGGGTACTCTGTTGATCTCCAAGATCCGCGA GGAGTTCCCCGACCGCATGATGGCTACCTTCTCCGTCGTGCCCTCCCCCAAGGTCTCTGACACCGTCGTCGAGCCCTA CAACGCCACCCTCTCCGTCCACCAGCTGGTCGAGAACTCCGACGAGACCTACTGCATTGACAACGAGGCTCTCTACGA CATCTGCATGCGTACCCTGAAGCTGTCCAACCCCTCTTACGGTGACCTGAACCACCTGGTCTCCGCCGTCATGTCTGGC GTCACCACTTGCTTGCGTTTCCCTGGTCAGCTCAACTCTGACCTGCGCAAGTTGGCTGTCAACATGGTGCCCTTCCCCC GTCTGCACTTCTTCATGGTCGGCTTTGCTCCGCTGACCAGCCGTGGCGCTCACTCTITCCGTGCCGTCACTGTICCCG TGCCATCTTGTAAGTGATCTTCCAATTGTTTCTAATCGAATCGTATCATTCTTGAGCTAACGGGTTTTCTCTAGCCGTGGTA AGGTCTCCATGAAGGAGGTCGAGGACCAGATGCGCAACGTCCAGAACAAGAACTCCTCCTACTTTGTTGAGTGGATCC AGGTCTCCATGAAGGAGGTCGAGGACCAGATGCGCAACGTCCAGAACAAGAACTCCTCCTACTTTGTTGAGTGGATCC CGCTATCCAGGA

FIGURE 4. Above are proposed dsRNA constructs for Neopestalotiopsis sp.

CONCLUSIONS AND FUTURE WORK

Locations of all key elements that characterize beta-tubulin were identified
dsRNA constructs of various lengths were designed based on the characterization of beta-tubulin
Future work is to test these dsRNA constructs against Neopestalotiopsis sp . to assess efficiency of control

ACKNOWLEDGEMENTS

Ministry of
Aricture, Food \&
Rurall Affairs

This work is graciously funded by Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA-Alliance project 030712,) Berry Growers of Ontario (Grant 055219), North American Strawberry Growers Association and the Raymond Chyc graduate scholarship

REFERENCES

MCNally J, Prapagar K, Goldenhar K, Pate E, Shan S, Kalischuk M. 2023.. New Dis Rep. 48:e12210.
 Koeppe S, Kawchuk L, Kalischuk M. 2023. IJMS. 24(11): 9755

Zhao Z et al. 2014. Sci Rep. 4:6746.
FIGURE 2. Pictured to the left is a diagram of the characterization of Nrosae_Btub (1910 bp). Solid black bars are the exons (bp count in green), lines connecting are introns (bp count in black), green is the tubulin_autoreg motif (12 bp), and yellow is
Tubulin_Autoreg 400 bp

