

Emerging threat of ring nematode in Ontario's Fruit Crop Production: What we know so far

Jerry Akanwari (Brock University)

Supervisor: Tahera Sultana (AAFC Vineland)

- Ontario contributed 27.7% of Canada's total fruit production in 2021.
- Ontario's total farm gate value: \$225 m.
- High-value fruit crops: apples, peaches, plums, cherries, nectarines, etc.
- Production hampered by several factors
 e.g. plant parasitic nematodes

- Plant parasitic nematodes cause considerable economic losses in fruit crops.
- Cause damage by feeding on roots and predisposing plants to secondary infection.
- Global impact of nematodes on crop yields, estimated at **\$80 billion annually**.

Jones et al 2013

- Ring nematodes (*Mesocriconema*) pose a significant threat to crop production.
- Other names: Criconemoides, Criconemella
- Distributed globally, North America: 1511 species.

Powers et al., 2021, Wouts, 2006

Survival Strategies

Poorly dispersed

Lack survival strategies

Preferred natural environments

Indicators for biogeographical analysis

 Adapted to disturbed environments e.g. Mesocriconema xenoplax.

• Feed on wide range on agricultural crops

- Preferred host: perennial crops such as orchards
- Second most important nematodes in orchards in BC

- Pierce root cells from the soil outside of the plant.
- Feeding can reduce 85% of root biomass.
- Estimated to reduce 58% of vine growth in British Columbia.
- Yield reduction occurs when populations reach 6-8 rings / g of soil.

- Makes *Prunus* trees more susceptible to peach tree short life (PTSL).
- Predisposes *Prunus* spp. to bacterial canker.

- Restriction of most nematicides.
- Wide host range limits crop rotation.
- Rootstocks in BC did not exhibit any resistance.

Why this research

Reports of the Tree Fruit Decline (TFD) disease in Canada

- TFD can affect 50% of newly established trees

- Cause 10% mortality of orchards annually.

Preliminary studies shows that viruses and nematodes may contribute to TFD.

© Bugwood.org, CC BY 3.0 - H.J. Larsen

No studies on the relationship between ring nematode and orchards production in Ontario.

Conducted a systematic study in various fruit orchards in Ontario to **assess the frequency and distribution of** *Mesocriconema xenoplax*, aiming to inform critical management decisions.

Materials and Methods

Soil sample collection locations

Study crops

□ Apples

Peaches

□ Apricots

Plums

□ Sweet cherries

Materials and Methods

Soil sampling

Soil probes: 20 cores at 20m² area.

Nematodes extraction

Centrifugation: 100g soil

Morphological identification

Count total number and id

Molecular identification

RESULTS AND DISCUSSION

The frequency of detection (%) M. xenoplax in orchards in Ontario

- High incidence of *M. xenoplax in* apricots and plums orchards.
- Apple: 52% detection in ON, compared to 51% in British Columbia orchards.
- Sweet cherry had the lowest number of samples with *M. xenoplax* (79% in BC).

Prevalence of Mesocriconema xenoplax in orchards in Ontario

- Plum had the highest number of *M.* xenoplax (965 rings /Kg of soil).
- Apricot had the second highest (612 rings /Kg of soil).
- Sweet cherry recorded the lest population (207/kg rings / kg of soil).

The frequency of detecting *M. xenoplax* at study locations

- All sample fields in NOTL had *M.* xenoplax.
- All locations except Springwater had more than 50% of orchards testing positive for *M. xenoplax*.

% identity with US population: 99.86

The study resulted in the first report of ring on Apricots in Ontario

Disease Note

Diseases Caused by Nematodes

First Report of Mesocriconema xenoplax from Apricots (Prunus armeniaca) in Ontario, Canada

Jerry Akanwari,^{1,2} Tahera Sultana,^{1,†} Elyse Aubry,^{1,2} and Qing Yu³

¹ Agriculture and Agri-Food Canada, Vineland, Ontario LOR 2EO, Canada

² Department of Biological Sciences, Brock University, Saint Catharines, L2S 3A1, ON, Canada

³ Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON, Canada

Funding: Funding was provided by Agriculture and Agri-Food Canada. Plant Dis. 107:1244, 2023; published online as https://doi.org/10.1094/ PDIS-05-22-1113-PDN. Accepted for publication 23 September 2022.

Conclusion and Future Recommendations

- High prevalence and frequency of occurrence of Mesocriconema xenoplax in Ontario's orchards could significantly impact fruit production.
- The detection of *M. xenoplax* in all soil samples from Niagara-on-the-Lake requires urgent attention from growers and all stakeholders.

- Need to determine whether aggressive populations exits.
- Assessment of rootstocks / self-rooted orchards resistance against *M. xenoplax*.

THANK YOU

