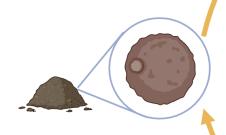
Endophytic colonization of *Beauveria* bassiana for management of clubroot on cabbage

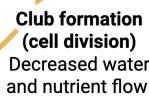
Kelly Ruigrok, Bruce D. Gossen, Mary Ruth McDonald

Ontario Pest Management Conference

October 24, 2025


Clubroot in Canada

Plasmodiophora brassicae Wor.


Obligate biotrophic chromist

- A major threat to brassica crop production
 - Cabbage farm gate value \$74 million
- Limited management strategies

Resting spore survival Plasmodiophora brassicae overwinters in soil

Clubroot Life Cycle

Club decomposition Clubs decompose and release new resting spores

Primary infection

(root hairs) Zoospores

Secondary infection

(root cortex)

Zoospores

Why B. bassiana and Clubroot?

Plant endophytic attributes:

- Plant growth promotion
- Nutrient acquisition
- Stress tolerance
- Disease suppression

Competition

Antibiosis (ex. Beauvericin)

Parasitism

Induced Systemic Resistance

Why Cabbage?

Application of *B. bassiana* products, **BioCeres** and **BotaniGard**, to cabbage seedlings before transplanting will allow for colonization before exposure to *P. brassicae* in the field

Research Objectives

1) Evaluate the effect of *B. bassiana* on clubroot incidence and severity under controlled and field conditions.

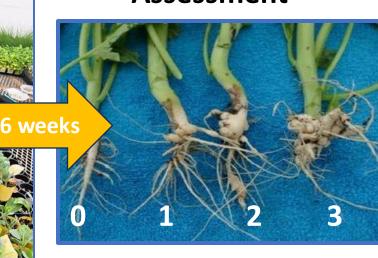
1.b) Confirm that *B. bassiana* can colonize cabbage seedlings via soil drench.

2) Assess effects on plant growth and insect damage.

Methods

Growth Room

RCBD with 2 factors: B. bassiana and inoculum load


1) B. bassiana Appl.

2) Inoculum prep.

3) Transplant

4) Clubroot Assessment

DSI (0 - 3 scale)

Soil drench

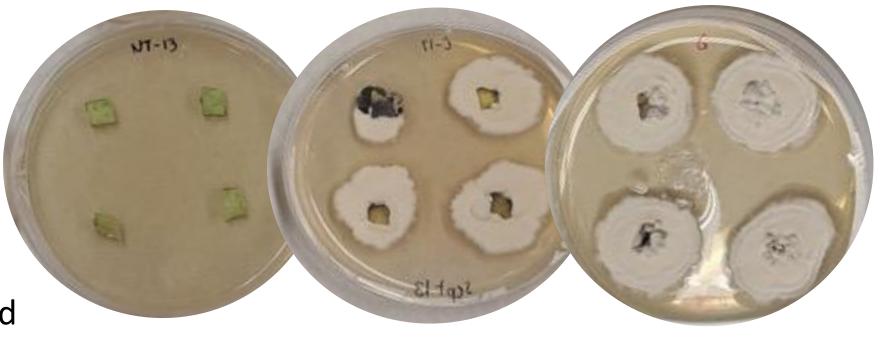
Spore suspension

1 x 10⁵, 10⁶, 10⁷ spores / mL @ 5 mL per plant

Methods

Field

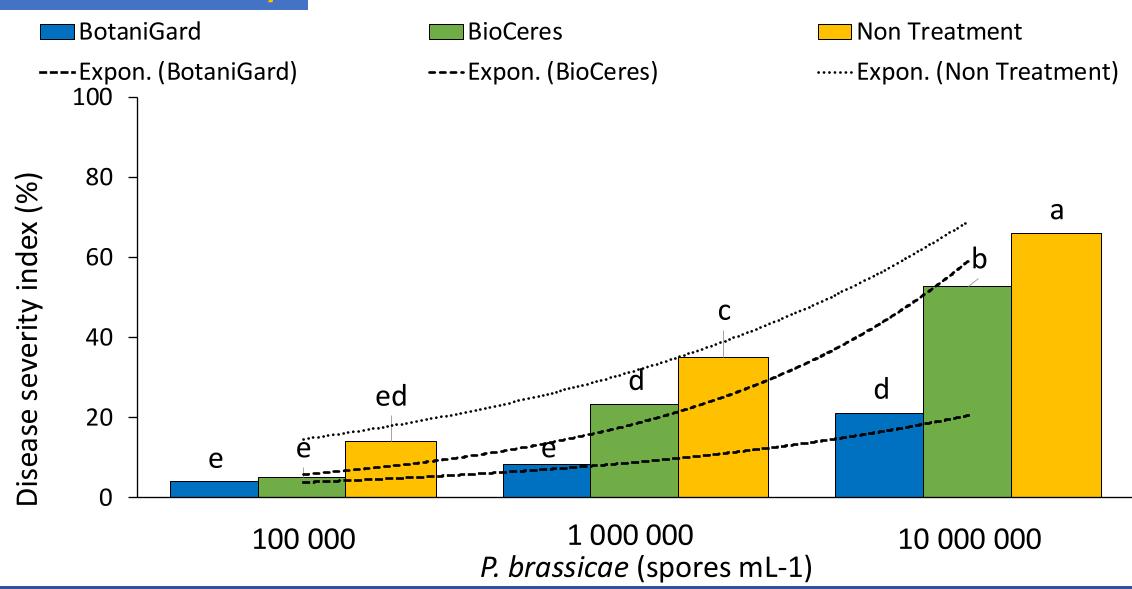
Ontario Crops Research Centre - Bradford

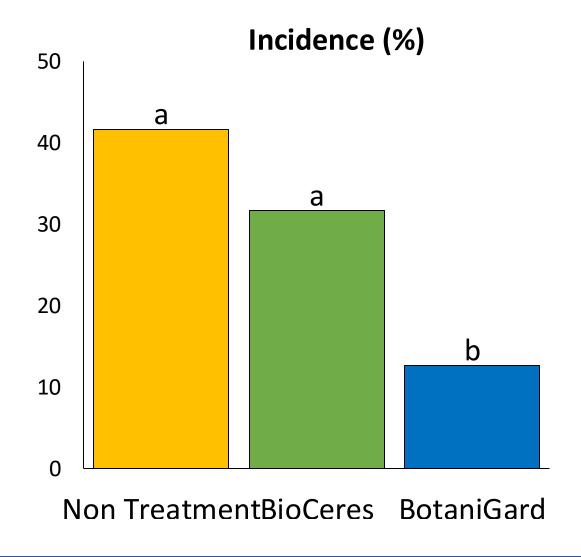


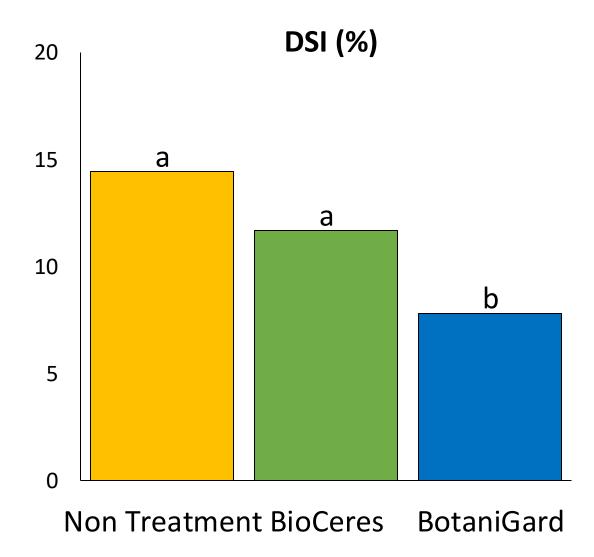
^{*} Soil naturally infested with *P. brassicae*

Methods

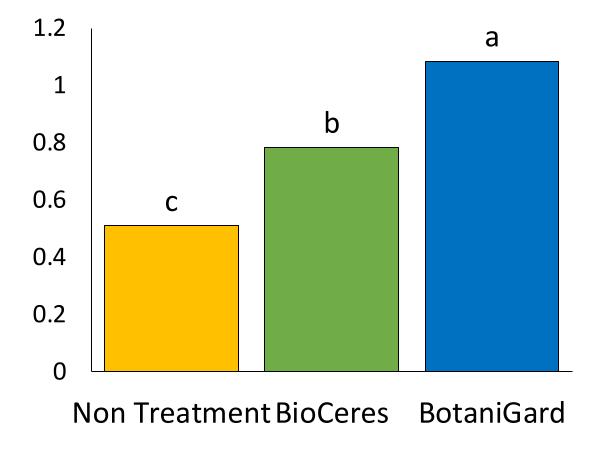
Endophyte colonization

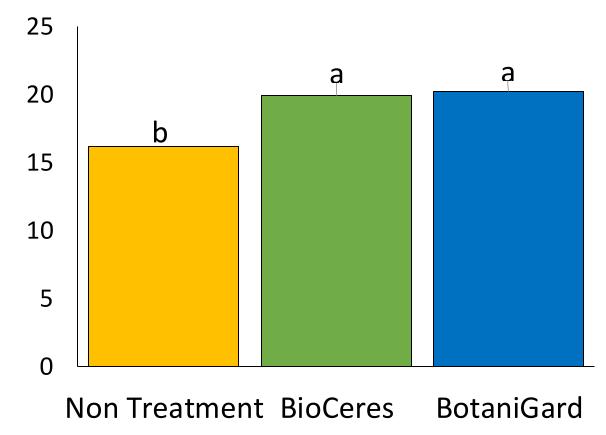

- 16 samples per experimental unit
- Surface sterilized
- Plated on PDA
- Colonization assessed after 14 days


(a) Non-Treatment (b) BioCeres (c) BotaniGard (control)


Results Growth room study

* 3 combined runs


Results Clubroot 2025 field trial



Results Plant growth promotion

2024 Fresh Weight (kg)

2025 Fresh Weight (kg)

Results Endophyte colonization

- Colonization rates were similar between runs in the growth room
- Colonization dropped to 0% at final assessment in the field

Treatment	Growth Room (%)		2024 field (%)		2025 field (%)	
	28 dpi	70 dpi	28 dpi	98 dpi	28 dpi	98 dpi
BioCeres	40	36	40	0	35	0
BotaniGard	70	67	62.5	0	65	0

Results Insect damage

No significant differences among treatments for caterpillar presence or feeding damage on leaves

Larvae of imported cabbageworm

Chrysalid of imported cabbageworm

Adult butterfly of imported cabbageworm

Key Takeaways!

- BotaniGard reduced clubroot severity in both growth room studies and in the field (2025 only).
- B. bassiana improved plant growth with and without the presence of P. brassicae in the field.
- X Did not reduce insect damage in the field.

Discussion

- Why did BotaniGard outperform BioCeres?
- Why did colonization drop to 0% at final assessment in the field?
- Will this work on other brassica vegetables?

Acknowledgements

- •Thank you to my lab mates, Sue Couling, and staff at the OCRC – **Bradford**
- Thank you to the funding partners

References

Batcho, A., Ali, M., Samuel, A. O., Shehzad, K., & Rashid, B. (2018). Comparative study of the effects of five *Beauveria bassiana* (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains on cabbage moth *Plutella xylostella* (L.) (Lepidoptera: Plutellidae). *Cogent Environmental Science, 4*(1). https://doi.org/10.1080/23311843.2018.1473007

Chen, J., Akutse, K. S., Saqib, A., et al. (2020). Fungal endophyte communities of crucifer crops are seasonally dynamic and structured by plant identity, plant tissue and environmental factors. *Frontiers in Microbiology, 11*, 556. https://doi.org/10.3389/fmicb.2020.00556

Drury, S. C., Gossen, B. D., & McDonald, M. R. (2021). Clubroot resistance in canola and brassica vegetable cultivars in Ontario, Canada. *Canadian Journal of Plant Science*, 101(5), 730–740. https://doi.org/10.1139/cjps-2020-0280

Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008). *Beauveria bassiana*: Endophytic colonization and plant disease control. *Journal of Invertebrate Pathology, 98*(3), 267–270. https://doi.org/10.1016/j.jip.2008.01.010

Quesada-Moraga, E., González-Mas, N., Yousef-Yousef, M., Garrido-Jurado, I., & Fernández-Bravo, M. (2023). Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. *Journal of Pest Science*, 97(1), 1–15. https://doi.org/10.1007/s10340-023-01679-y

Sui, L., Lu, Y., Zhou, L., Li, N., Li, Q., & Zhang, Z. (2023). Endophytic *Beauveria bassiana* promotes plant biomass growth and suppresses pathogen damage by directional recruitment. *Frontiers in Microbiology, 14*, 1188724. https://doi.org/10.3389/fmicb.2023.1188724

Yerukala, S., Butler, D. M., Bernard, E. C., Gwinn, K. D., Grewal, P. S., & Ownley, B. H. (2022). Colonization efficacy of the endophytic insect-pathogenic fungus *Beauveria bassiana* across the plant kingdom: A meta-analysis. *Critical Reviews in Plant Sciences*, 41(4), 241–270. https://doi.org/10.1080/07352689.2022.2109287

Questions?